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Preliminaries



Preliminaries

Convex conjugate (Legendre–Fenchel conjugate):

• For f : X → [−∞,∞]

f∗(y) = sup
x∈X
〈y, x〉 − f(x)

• Biconjugate f∗∗ is largest lower semi-continuous
(limx→x0 inf f(x) ≥ f(x0)) convex function below f

• If f is l.s.c. and convex, then f∗∗ = f (a corollary of Hahn-Banach
theorem)
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Preliminaries

• Given a convex and l.s.c. f : X → [−∞,∞] the subgradient at a
point x is defined as

∂f(x) := {p ∈ X : f(y) ≥ f(x) + 〈p, y− x〉, ∀y ∈ X}

• For convex, proper, and l.s.c., proximity operator is

proxτ f(x) := min
y∈X

f(y) + 1
2τ ‖y− x‖

2
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Fenchel–Rockafellar duality

Definition
Let f : Y → (−∞,∞] & g : X → (−∞,∞] be convex and l.s.c., and
K : X → Y be a linear operator. As f = f∗∗, we have

minx∈X f(Kx) + g(x) = min
x∈X

sup
y∈Y
〈y, Kx〉 − f∗(y) + g(x)

If f(0) <∞ & g continuous at 0, or in finite dimension case ∃x ∈ X
s.t. Kx ∈ relint{dom f}and x ∈ relint{dom g},

min
x

sup
y
〈y, Kx〉 − f∗(y) + g(x) = max

y
inf
x
〈y, Kx〉 − f∗(y) + g(x)

= max
y
−f∗(y)− g∗(−K∗y)
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Alternating Projections



Alternating Projections

Let K1, . . . , Kk ⊂ RN be convex sets which projection on each of them
is simple (e.g., hyperplanes, halfspaces, etc).

Aim: Calculate the projection of x ∈ RN onto the
k⋂
i=1
Ki.

Problem

min
u∈RN

1
2‖x− u‖

2 +
k∑

i=1
ψi(u), where ψi(u) =

{
0 u ∈ Ki
+∞ O.W.

.

5



Historical Notes

• In 1949 Von Neumann (Neumann the Great) Proved the
convergence in norm for two closed subsets of a Hilbert space

• In 1962, Halperin generalised Neumann’s theorem for periodic
update sequence (Using Kakutani’s lemma)

• Convergence in finite dimension
• Convergence in the weak topology
• Not convergent in norm in infinite dimensional case with more
than 2 closed sets

In our setting we concentrate on the closed and convex subsets. In
this case the AP is convergent.
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An example of Alternating Projections

Figure 1: Alternating projections on two lines (hyperplanes) in R2 7



Dual problem

Problem

min
y∈RN

1
2‖x− y‖

2 + (
k∑

i=1
ψi)

∗(y)

Note that ū is the solution of the primal problem ⇐⇒ ȳ = x− ū
solves the dual problem.

Using inf-convolution(∑k
i=1 ψi

)∗
(y) = inf

{∑k
i=1 ψ

∗
i (yi) :

∑k
i=1 yi = y

}
, the dual problem is

inf
(yi)ki=1∈(RN)k

1
2

∣∣∣∣∣x−
k∑

i=1
yi

∣∣∣∣∣

2

+
k∑

i=1
ψ∗
i (yi)
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Dykstra

Using alternating minimisation on the dual problem, the main
iteration of Dykstra’s algorithm is

Dykstra iterations
{
xn+1i = ΠKi(xni−1 + yni )
yn+1i = xni−1 + yni − x

n+1
i

In 1985 Dykstra proved xn n→∞−→ Π⋂k
i=1 Ki

(x).
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Accelerations



Anderson Acceleration on Dykstra

Algorithm 1 Anderson acceleration for Dykstra

Input: x0 ∈ RN, j ∈ N, ε > 0
Step 1: i = 0 and x = x0
While i ≤ j:




xi ← Dykstra(x)
x← xi, xold = x
i← i+ 1

Step 2: U := [x1 − x0, . . . , xj − xj−1]
Step 3: Solve the linear system (UTU+ λI)z = 1
c := z/zT1
Step 4: x←∑j−1

k=0 ckxk
If ‖x− xold‖ ≥ ε:
x0 ← x then go to ”step 1”
Else:
Output: x 10



Conjugate Gradient (CG)

Let convex sets be affine hyperplanes. For projection on these sets
we have Πax=b x0 = x0 +

(
b−a.x0
‖a‖

)
a = (I− a⊗ a)x0 + ba. Then

x1 = (
n∏

k=1
(I−ak⊗ak))x0+(

n∏

k=2
(I−ak⊗ak))b1a1+· · ·+(I−an⊗an)bn−1an−1+bnan

We form a symmetric operator and the right-hand-side vector as follows:

A := x0 − (M1 . . .MnMn . . .M1)x0,

b := M1 . . .MnMn . . .M2b1a1+· · ·+M1 . . .Mnbnan+M1 . . .Mn−1bnan+· · ·+M1b2a2+b1a1
Finally, we apply CG on the linear system Ax = b to find the desired point.
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Numerical Experiments

Figure 2: Projection of a random point on the intersection of 32 hyperplanes in R32 by
setting ε = 10−11 12



Numerical Experiments

Figure 3: Projection of a random point on the intersection of 128 half-space
in R128 by setting ε = 10−9 13



Applications



Schwarz method for solving Poisson equation

Let us consider the space H = H10(Ω) and Ω = Ω1 ∪ Ω2 ⊂ R2. The
subdomains are sufficiently smooth and the H is Hilbert

〈u, v〉H = 〈∇u,∇v〉L2(Ω) =

∫

Ω
∇u.∇v dx

Poisson equation with Dirichlet boundary condition
{
∆u = f in Ω

u = 0 on Γ

where Γ = ∂Ω. Also, Γk = ∂Ωk ∩ ∂Ω and γk = ∂Ωk\∂Ω, f ∈ L2(Ω)

Goal: Finding a weak solution of the PDE above.
Idea: Alternating projections on a composite domain
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Subproblems

By beginning from u0 ∈ H we obtain u1 as a weak solution of





∆u1 = f in Ω1,

u1 = 0 on Γ1,

u1 = u0 on γ1

After finding u1 by setting u1 = u0 on Ω2\Ω1 we extend u1 to Ω. Then we
obtain u2 by solving the following problem






∆u2 = f in Ω2,

u2 = 0 on Γ2,

u2 = u1 on γ2

Let Yk = H10(Ωk), Mk = Y⊥k and Πk be orthogonal projection onto Mk for
k ∈ {1, 2}. Each Yk can be considered as a close subspace of H by extending
functions defined on Ωk by zero to whole Ω. Also M = M1 ∩M2.
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Convergence

u− u0 = (u− u1)︸ ︷︷ ︸
∈M1

+(u1 − u0)︸ ︷︷ ︸
∈M⊥

1

=⇒ Π1(u− u0) = u− u1

Similarly Π2(u− u1) = u− u2 and this way continues. For each n ≥ 1,
xn := u− un. Thus,

x2n = (Π2Π1)
nx0,n ≥ 1

By von Neumann’s theorem,

‖x2n − ΠMx0‖ n→∞−→ 0

=⇒ ‖x2n+1 − ΠMx0‖ = ‖Π1(x2n − ΠMx0)‖ ≤ ‖x2n − ΠMx0‖ n→∞−→ 0

=⇒ ‖xn − ΠMx0‖ n→∞−→ 0

Since M1 ∩M2 = Y⊥1 ∩ Y⊥2 = (Y1 + Y2)⊥ and the subspace Y = Y1 + Y2 is dense
in H, we have

M = Y⊥ = {0} =⇒ xn n→∞−→ 0 =⇒ ‖un − u‖ n→∞−→ 0
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Numerical example

Figure 4: Composite Domain
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Figure 5: Anderson acceleration on Schwarz method for solving Poisson
equation
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Some other Applications

• Linear Classification
• SDP feasibility & Special cases of matrix completion
• Mutual applications with coordinate descent for regularised
regression as an equivalent method

• Mutual applications with ADMM in case we have 2 as an
equivalent method

Note that the randomised versions of Dykstra by stochastic
coordinate descent on the dual variables exist that under some
assumptions provide interesting results.
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Optimal Transport (OT)



Setting

Consider the optimal transport problem

min
X∈Σµν

〈C, X〉, Σµν = {X ∈ Rn×n
+ : X1 = µ, XT1 = ν},

where

• = (1, 1, . . . , 1) Rn

• C ∈ Rn×n
+ is a given cost matrix

• ∆n = {x ∈ RN :
∑n

i=1 xi = 1 , xi ≥ 0 for i = 1, . . . ,n} is unit simplex
• µ ∈ ∆n, ν ∈ ∆n

20



Hybrid Primal Dual

min
x∈X

max
y∈Y

L(x, y) = 〈Kx, y〉+ f(x) + g(x)− h∗(y)





K = I (Identity matrix)
f(Y) = 0
g(Y) = δ

{0}
(Y) (Strongly convex)

h∗(X) = δ(X)
Σµν

+ 〈C, X〉

min
X

max
Y
〈C, X〉+ δ(X)

Σµν

+ X : Y− δ{0}(Y)

21



HPD Method Iteration

For x0, x̄0 ∈ domξX , y0 ∈ domξY, and given nonnegative sequences {τk}k,
{σk}k, {θk}k:

yk+1 = argmin
y∈Y

h∗(y)− 〈Kx̄k, y〉+ 1
σk
DY(y, yk)

xk+1 = argmin
x∈X

g(x) + 〈Kx, yk〉+
1
τk
DX (x, xk)

x̄k+1 = xk+1 + θk(xk+1 − xk).

In case τk ≡ τ0 and σk ≡ σ0 are constant, taking θk ≡ 1 and τ0σ0L2 ≤ 1, we
have for all (x, y) ∈ X × Y ,

Lx,y(x̂N, ŷN) ≤
1
TN

(
1
τ0
DX (x, x0) + 1

σ0
DY(y, y0)

)

where TN = N
2 , x

N = 1
N
∑N

k=1 xk, yN = 1
N
∑N

k=1 yk.
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Bound of duality gap

Assuming ε type-2 error in calculating proximal operator and having an error
‖ek‖ at each iteration (typical in algorithms like Sinkhorn), we have can
derive the following bound

〈C, X̄− X∗〉 ≤ 1
TNσ0

(1+ (2N
√
2− TNσ0‖C‖)ε),

where ‖ek‖ ≤ ε.

• By applying Nesterov acceleration on the update of X in the coordinate
descent, we can derive and accelerated algorithm.

• Choosing the acceleration parameter is quite challenging.

• The stopping criterion would be similar to Sinkhorn and Round
‖µ− Xnew1‖1 + ‖ν − XTnew1‖1 < errormax

• Combining HPD and Round, Chambolle et al., 2023 proposed a tighter
bound and introduced accelerated method with backtracking.
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Summary



Summary

We talked about

• Fundamental definitions and theorems in Convex Analysis
• Alternating Projections
• Primal-Dual Alternating Projections
• Acceleration Methods
• An application to solving PDEs
• Discrete Optimal Transport, HPD setting, acceleration, and
bound of Duality Gap

I would love to answer your questions :)
Thank you!
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